Morita equivalence and symplectic realizations of Poisson manifolds
نویسندگان
چکیده
منابع مشابه
Poisson geometry and Morita equivalence
2 Poisson geometry and some generalizations 3 2.1 Poisson manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Dirac structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Twisted structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Symplectic leaves and local structure of Poisson manifolds ...
متن کاملSymplectic Groupoids and Poisson Manifolds
0. Introduction. A symplectic groupoid is a manifold T with a partially defined multiplication (satisfying certain axioms) and a compatible symplectic structure. The identity elements in T turn out to form a Poisson manifold To? and the correspondence between symplectic groupoids and Poisson manifolds is a natural extension of the one between Lie groups and Lie algebras. As with Lie groups, und...
متن کاملFunctoriality and Morita Equivalence of Operator Algebras and Poisson Manifolds Associated to Groupoids *
It is well known that a measured groupoid G defines a von Neu-mann algebra W * (G), and that a Lie groupoid G canonically defines both a C *-algebra C * (G) and a Poisson manifold A * (G). We show that the maps (G) are functorial with respect to suitable categories. In these categories Morita equivalence is isomorphism of objects, so that these maps preserve Morita equivalence.
متن کاملFunctoriality and Morita Equivalence of C * -algebras and Poisson Manifolds Associated to Lie Groupoids
It is well known that a Lie groupoid G canonically defines both a C *-algebra C * (G) and a Poisson manifold A * (G). We show that the maps G → C * (G) and G → A * (G) are functorial with respect to suitably defined categories. The arrows (Hom-spaces) between Lie groupoids are taken to be isomorphism classes of regular bibundles (Hilsum–Skandalis maps), composed by a canonical bibundle tensor p...
متن کاملVaisman LOCALLY LAGRANGIAN SYMPLECTIC AND POISSON MANIFOLDS
We discuss symplectic manifolds where, locally, the structure is that encountered in Lagrangian dynamics. Examples and characteristic properties are given. Then, we refer to the computation of the Maslov classes of a Lagrangian submanifold. Finally, we indicate the generalization of this type of symplectic structures to Poisson manifolds. The paper is the text of a lecture presented at the Conf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales scientifiques de l'École normale supérieure
سال: 1992
ISSN: 0012-9593,1873-2151
DOI: 10.24033/asens.1652